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1 Prerequisites

1.1 Machine learning and artificial neural networks

Machine learning is the scientific study of algorithms and statistical models that computer sys-

tems use to perform a specific task without using explicit instructions, relying on patterns and

inference instead. It is seen as a subset of artificial intelligence.

Artificial neural networks (ANN) or connectionist systems are computing systems that are

inspired by the biological neural networks that constitute animal brains. Such systems ’learn’

to perform tasks by considering examples, generally without being programmed with any task-

specific rules. Deep learning is part of a broader family of machine learning methods based on

artificial neural networks.

An ANN consists of an input layer, an output layer and multiple intermediate ’hidden’ layers.

The nodes of each layer are connected to the consecutive layers, and thus can affect their values

through weights1 and biases2.

output = Σ(input× weight) + bias

The weights and biases are the learnable parameters of the ANN. An illustration of the various

layers of an ANN is shown in Fig. 1.

Figure 1: ANN illustration

1Weight represents the strength of the connection between nodes.
2Bias is an extra (offset) input to neurons to make sure that neurons are activated even if inputs are 0.
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1.2 Convolutional neural networks

A convolutional neural network (CNN) is a class of deep neural networks, most commonly

applied to analyzing visual imagery. The pre-processing required in a CNN is much lower as

compared to other classification algorithms.

There are 3 types of hidden layers in a CNN -

1. Convolutional layers - These convolve3 the input data matrices (images) and pass its

result to the next layer. The filter kernel (matrix) dimensions are hyperparameters, and

the matrix values are the weights, which are learnable. This operation reduces the number

of free parameters, allowing the network to be deeper with fewer parameters.[

2. Pooling layers - These reduce the dimensionality of the data matrices but retain the

important information. Max pooling takes the largest element from a node (pixel) cluster.

3. Fully connected layers - These flatten the data matrices into vectors and feed it into

a fully connected structure like an ANN.

Some important hyperparamters are -

• Kernel size - dimensions of the filter - height× width× depth

• Padding - padding matrices with zeros to maintain image size after convolution

• Stride - number of pixel shifts over the input matrix

An illustration of the various layers of an CNN is shown in Fig. 2.

Figure 2: CNN illustration

3The general expression of an image convolution is g(x, y) = ω ∗ f(x, y) =

a∑
s=−a

b∑
t=−b

ω(s, t)f(x− s, y − t),

where g(x, y) is the filtered image, f(x, y) is the original image, ω is the filter kernel (matrix).
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1.3 Anomaly detection

Anomaly detection (AD) is the identification of rare items, events or observations which raise

suspicions by differing significantly from the majority of the data.

In this project, AD is used to categorize input data (simulated galaxy images) into normal

and anomalous classes. Three classes are chosen - Barred, Elliptical and Spiral. The AD al-

gorithm used is the Deep Suppoert Vector Data Description (Deep SVDD) used in Lukas Ruff

et. al. (2018). The algorithm is described in a later section.

1.4 Python packages

A good background in the Python programming language is essential, including knowledge of

object oriented programming languages. The following packages are extensively used -

• torch (PyTorch) provides two high-level features for machine learning - Tensor compu-

tation and Deep Neural Networks.

• torchvision consists of popular datasets, model architectures, and common image trans-

formations for computer vision.

• sklearn (scikit-learn) provides a range of supervised and unsupervised learning algo-

rithms for machine learning.

• numpy adds support for large, multi-dimensional arrays and matrices, along with a large

collection of high-level mathematical functions.

• matplotlib is a plotting library which produces publication quality figures in a variety

of formats and environments.

• pandas provides high-performance, easy-to-use data structures and data analysis tools

• PIL (Pillow) adds support for opening, manipulating, and saving many different image

file formats.

Along with the ones listed above, the packages click, logging, time, os are also used.
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2 The project

2.1 Motivation

Star-galaxy classification has always been important to Astronomy. With the advent of ma-

chine learning, various algorithms have made this process simpler. Among galaxies themselves,

there are various morphologies observed - spiral, barred spiral, elliptical and irregular. Thus,

it is important to make a qualitative distinction among these.

The rapid development in computation has made it possible to generate magnetohydrodynamic

simulations of galactic systems. Some of these include the Illustris4 and the FIRE5 projects.

The results of these simulations need to be compared with actual galaxies. This can be done

using machine learning.

2.2 Objective

To apply an anomaly detection algorithm developed by Lukas Ruff et. al. (2018) to compare

and categorize simulated and actual galaxy images.

2.3 Algorithm and code

The method used is the same as the one used in the paper by Lukas Ruff et. al. (2018).

The github code for the same can be found here. This code works on the standard MNIST

and CIFAR-10 labelled datasets. Thus, it has been edited and extended to use unlabelled and

custom datasets - the simulated galaxies image data. The edited code can be found here. The

two main parts of the algorithm are described below.

Deep autoencoder

An autoencoder is an ANN that learns to copy its input to its output. It has an internal layer

that describes a code used to represent the input, and it is constituted by two main parts: an

encoder that maps the input into the code, and a decoder that maps the code to a reconstruction

of the original input. Autoencoders are mainly used for dimensionality reduction (bottleneck).

An illustration of a Deep autoencoder is shown in Fig. 3.

In this project, the autoencoder network is the pretrainer, which tries to learn the identity

function. After the designated number of epochs are run, the learnt weights of the encoder

network are used as starting weights for the subsequent training AD network.

4http://www.illustris-project.org/
5https://fire.northwestern.edu/
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Figure 3: Deep autoencoder illustration

Deep SVDD

The Deep support vector data description (Deep SVDD) is an AD algorithm used for one-class

classification. Deep SVDD uses minimum volume estimation by finding a data-enclosing hy-

persphere of smallest size. To do this a neural network is employed to train to map the data

into a hypersphere of minimum volume.

For some input space X ⊆ Rd and output space F ⊆ Rp, let φ(;W) : X → F be a neu-

ral network with L ∈ N hidden layers and set of weights W = {W1, ...,WL} where Wl are the

weights of layers l ∈ {1, ..., L}. Below are two ways of optimization (loss functions) -

1. Soft-boundary Deep SVDD -

min
R,W

(
R2 +

1

νn

n∑
i=1

max{0, ||φ(xi;W)− c||2 −R2}+
λ

2

L∑
l=1

||Wl||2
)

Minimizing R2 minimizes the volume of the hypersphere. The second term is a penalty

term for points lying outside the sphere after being passed through the network. Hyperpa-

rameter ν ∈ (0, 1] controls the trade-off between the volume of the sphere and violations

of the boundary. The last term is a weight decay regularizer on the network parameters

W with hyperparameter λ > 0.

2. One-Class Deep SVDD -

min
W

(
1

n

n∑
i=1

||φ(xi;W)− c||2 +
λ

2

L∑
l=1

||Wl||2
)

A quadratic loss is employed for penalizing the distance of every network representation

φ(xi;W) to c ∈ F .The second term again is a network weight decay regularizer with

hyperparameter λ > 0.
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2.4 Directory structure

The main directory galaxy_classify contains three subdirectories - log (containing log files),

data (containing image data) and src (containing source code).

The src directory contains modules main.py and deepSVDD.py, and the following subdirecto-

ries -

• base contains modules forming the basic skeleton for datasets, networks and trainers.

These modules are left mostly unchanged, except for adding a provision for the application

(unlabelled) dataset.

• datasets contains the module to load training, testing and application datasets (plus a

preprocessing module). This module is explained in a later section.

• networks contains the module which defines network architectures. This module is ex-

plained in a later section.

• optim contains modules implementing the optimization (and training) of the Deep au-

toencoder and the Deep SVDD codes. These modules are left mostly unchanged, except

for adding a provision to apply the model to unlabeled datasets. They are explained in a

later section.

• utils contains modules to collect, load and save results. These modules are left un-

changed.

These directories and submodules are extensively described in later sections.

2.5 Datasets

The datasets directory contains the module galData.py, which loads custom labelled (testing

and training) and unlabelled (application) datasets. The class, galDataset does this job. The

function load_dataset is callable from the main module to run the complete code.

The other module in this directory, preprocessing.py has functions for global contrast nor-

malaization6 and getting target image labels (0 or 1).

Here are some important points to consider -

1. All images (labelled and unlabelled) need to be in grayscale and of dimensions 256 px

× 256 px. If not, the dataset needs to be converted to this format. This has been

implemented in the equal_size.py module of the data directory using Python’s PIL

package.

6output of GCN is
image−mean

std. dev.
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2. Training and testing data have to be augmented7 if there are not many images. This has

been implemented in the data_augment.py module of the data directory using Python’s

PIL package..

3. The inputs to the Python code are in the form of readable csv files, which have two

columns - image location and image label. For labelled data, both columns are filled,

while for unlabelled data, the second column consists of empty strings. An example is

shown in Tab. 1 and Tab. 2. These files are read using Python’s pandas package.

Location Label

/path/to/directory/labelled1.jpg 0

/path/to/directory/labelled2.jpg 2

/path/to/directory/labelled3.jpg 1

... ...

... ...

Table 1: Labelled data file example (random labels)

Location Label

/path/to/directory/unlabelled1.jpg

/path/to/directory/unlabelled2.jpg

/path/to/directory/unlabelled3.jpg

...

...

Table 2: Unlabelled data file example (empty strings for labels)

The dataset used in this project is described below -

• Training and testing (labelled) data are the same. Generally, 70/30 or 80/20 division of

the dataset is recommended. In this case, however, the whole labelled dataset is used for

training since the model has to be applied to another set of unlabelled data.

The galaxy data images are classified into 3 labels - Barred (0), Elliptical (1) and Spiral

(2). All images are from Google Images, and were manually filtered to remove anomalous

images and/or artist impressions. 61, 65 and 73 images respectively were downloaded

respectively, and data augmentation increased the numbers by 500 each.

• Application (unlabelled) data consists of images from the Illustris and FIRE simulations.

890 and 25 images respectively were downloaded and resized. The labels of these images

are to be predicted by the machine learning program.

7Data augmentation involves random changes in image orientation (rotations and flips) and/or addition of

noise and similar effects. This helps in training since rotated/flipped images are new information to the program.
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Examples of images in the training/testing dataset are given in Figs. 4, 5, 6.

Figure 4: Barred galaxies

Figure 5: Elliptical galaxies

Figure 6: Spiral galaxies

2.6 Networks

The networks directory contains the module galNet.py, which defines the custom network ar-

chitectures of the Deep autoencoder and the Deep SVDD networks. The two classes, galNetwork_autoencoder

and galNetwork build the networks shown in Tab. 1 and Tab. 2 respectively. The functions

build_autoencoder and build_network are callable from the main module to run the com-

plete code.
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One thing to note is that the network architecture can be experimented with, and the number

of convolutional, pooling, fully connected layers is somewhat arbitrary, although the ones used

here are somewhat based on the VGG models8.

Input to task Task/operation performed

* × 1 × 256 × 256 conv 5 × 5 pad=2 [2 filters]

* × 2 × 256 × 256 pool 2 × 2 str=2

* × 2 × 128 × 128 conv 5 × 5 pad=2 [4 filters]

* × 4 × 128 × 128 pool 2 × 2 str=2

* × 4 × 64 × 64 conv 5 × 5 pad=2 [8 filters]

* × 8 × 64 × 64 pool 2 × 2 str=2

* × 8 × 32 × 32 conv 5 × 5 pad=2 [16 filters]

* × 16 × 32 × 32 pool 2 × 2 str=2

* × 16 × 16 × 16 conv 5 × 5 pad=2 [32 filters]

* × 32 × 16 × 16 pool 2 × 2 str=2

* × 32 × 8 × 8 conv 5 × 5 pad=2 [64 filters]

* × 64 × 8 × 8 pool 2 × 2 str=2

* × 64 × 4 × 4 reshape * × 1024

* × 1024 fc 256

* × 256 fc 64

* × 64 reshape * × 4 × 4 × 4

* × 4 × 4 × 4 deconv 5 × 5 pad=2 [64 filters]

* × 64 × 4 × 4 scale fac=2

* × 64 × 8 × 8 deconv 5 × 5 pad=2 [32 filters]

* × 32 × 8 × 8 scale fac=2

* × 32 × 16 × 16 deconv 5 × 5 pad=2 [16 filters]

* × 16 × 16 × 16 scale fac=2

* × 16 × 32 × 32 deconv 5 × 5 pad=2 [8 filters]

* × 8 × 32 × 32 scale fac=2

* × 8 × 64 × 64 deconv 5 × 5 pad=2 [4 filters]

* × 4 × 64 × 64 scale fac=2

* × 4 × 128 × 128 deconv 5 × 5 pad=2 [2 filters]

* × 2 × 128 × 128 scale fac=2

* × 2 × 256 × 256 deconv 5 × 5 pad=2 [1 filter]

* × 1 × 256 × 256 sigmoid

* × 1 × 256 × 256

Table 3: Deep autoencoder network (* is a placeholder for batch size)

8Visual Geometry Group has a developed a lot of models like VGG-11, VGG-13, VGG-16, VGG-19, and

these are some of the best performing network architectures in Deep Learning.
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The first half is the encoder, which consists of convolution and pooling layers. The second

half is the decoder, which consists of deconvolutions and scaling layers. The decoder tries to

reverse what the encoder does to imitate the identity function. This network is pretrained by

minimizing the loss function.

Input to task Task/operation performed

* × 1 × 256 × 256 conv 5 × 5 pad=2 [2 filters]

* × 2 × 256 × 256 pool 2 × 2 str=2

* × 2 × 128 × 128 conv 5 × 5 pad=2 [4 filters]

* × 4 × 128 × 128 pool 2 × 2 str=2

* × 4 × 64 × 64 conv 5 × 5 pad=2 [8 filters]

* × 8 × 64 × 64 pool 2 × 2 str=2

* × 8 × 32 × 32 conv 5 × 5 pad=2 [16 filters]

* × 16 × 32 × 32 pool 2 × 2 str=2

* × 16 × 16 × 16 conv 5 × 5 pad=2 [32 filters]

* × 32 × 16 × 16 pool 2 × 2 str=2

* × 32 × 8 × 8 conv 5 × 5 pad=2 [64 filters]

* × 64 × 8 × 8 pool 2 × 2 str=2

* × 64 × 4 × 4 reshape * × 1024

* × 1024 fc 256

* × 256 fc 64

Table 4: Deep SVDD network (* is a placeholder for batch size)

The above network is exactly same as the encoder network in the Deep autoencoder. This is

no coincidence. After this point, the optimizer is run to minimize the radius of the hypersphere

containing the normal vectors.

In a chronological order, the Deep autoencoder is pretrained first. The resultant weights of

the encoder network are used as initial weights in the Deep SVDD network, which is then

trained. This is done to prevent unnecessary training of the Deep SVDD network from scratch.

2.7 Optimizers

The optim directory contains the modules ae_trainer.py and deepSVDD_trainer.py, which

train and test the Deep autoencoder and the Deep SVDD networks respectively. The two

classes, AETrainer and DeepSVDDTrainer have various functions for this purpose.

These modules are almost exactly the same as the original. The difference is that a new func-

tion, apply_model, was added to apply the models to unlabelled data (the original program

works only for labelled data).
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2.8 Program parameters

The main.py module is the one which has to be run by the user. The main function has a lot

of parameters, most of which are self-explanatory (explained in the Python module).

There are three location parameters which are mandatory (while the rest of them have de-

fault values) -

• xp_path is the directory where the log files and model should be stored.

• train_test_path is the csv file of training/testing (labelled) images.

• apply_model_path is thr csv file of images on which model has to be applied (unlabelled).

Other important parameters are -

• normal_class is the label of the normal class (Barred is 0, Elliptical is 1, Spiral is 2).

• nu is the hyperparameter 0 < ν < 1 which controls the trade-off between the hypersphere

volume and boundary violations.

• objective is the loss function used (either ’one-class’ or ’soft-boundary’).

• optimizer_name is the optimization algorithm to be used for training. Examples include

stochasic gradient descent and Adam optimizer.

• load_config and load_model, if not None, are the files from which previous configuration

and model must be loaded.

• lr and ae_lr are the learning rates9 of the two networks respectively.

• n_epochs and ae_n_epochs are the number of epochs (iterations) for training of the two

networks respectively.

• lr_milestone and ae_lr_rmilestone are the epochs at which learning rates of the two

networks respectively are updated.

• batch_size and ae_batch_size are the number of images input (batch size) to the two

networks respectively in one epoch.

• weight_decay and ae_weight_decay are the weight decay10 rates of the optimizer of the

two networks.

9Learning rate is a hyperparameter that controls how much the weights of the network are influenced by the

loss gradient. This value should neither be too high nor too low.
10Weight decay is an additional term that causes the weights to exponentially decay to zero, if no other

update is scheduled. This prevents weights from growing too large.
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3 Results

3.1 Running the program

The main.py is run by providing the above-mentioned parameters. The values used in this

program are -

• normal_class = 0,1,2 (three runs)

• nu = 0.1

• objective = ’one-class’

• optimizer_name = ’adam’

• lr = 0.0001 and ae_lr = 0.0001

• n_epochs = 100 and ae_n_epochs = 100

• lr_milestone = 50 and ae_lr_rmilestone = 50

• batch_size = 200 and ae_batch_size = 200

• weight_decay = 0.5e-6 and ae_weight_decay = 0.5e-6

The exact flow of the program is show in Fig. 7.

Figure 7: Program flowchart
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3.2 Code output

The output files of the main code are as follows -

• results.json contains the testing results

• config.json contains the program configuration

• model.tar contains the model parameters (weights)

Along with the above files, two more text files are outputted for easy accessibility -

• test_output.txt contains test image results in two columns - image labels and scores

• apply_output.txt contains application image results in two columns - image indices

(irrelevant) and scores

The image scores are the most important outputs of all. They represent the final ’catego-

rization’ after the Deep SVDD program is run. This means that there is a strong correlation

between image scores and their labels (which are required).

The test image results for the three normal classes are shown in Figs. 8, 9, 10.

Figure 8: Test image results for normal class 0 (Barred)
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Figure 9: Test image results for normal class 1 (Elliptical)

Figure 10: Test image results for normal class 2 (Spiral)

On thing to note is that the x ranges of the images is truncated at 0.2, but the scores can reach

upto 1. This is done because the region before 0.2 is most interesting, where images labelled

0s and 1s have overlapping scores.
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Overlaying the above images are four lines - two red and two blue. These lines are manu-

ally realized thresholds for the score-label correlation. The five resulting regions are -

1. Before first red line - Most definitely label 0 or normal class

2. Between first red and blue lines - Probably label 0 or normal class

3. Between blue lines - Overlapping region, undecided label

4. Between second blue and red lines - Probably label 1 or anomalous class

5. After second red line - Most definitely label 1 or anomalous class

When the final model is applied to the simulated galaxy (application) images, the five regions

are labelled 0.0, 0.2, 0.5, 0.8, 1.0 respectively. Test image results are shown in Tab. 5.

Class Accuracy Th 1 Th 2 Th 3 Th 4

Barred 94.97% 0.032 0.041 0.083 0.105

Elliptical 99.66% 0.040 0.061 0.078 0.090

Spiral 96.05% 0.030 0.035 0.075 0.083

Table 5: Test Class accuracies and thresholds

The application image results for the three normal classes are shown in Figs. 11, 12, 13.

Figure 11: Application image results for normal class 0 (Barred)
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Figure 12: Application image results for normal class 1 (Elliptical)

Figure 13: Application image results for normal class 2 (Spiral)

The threshold lines are the same as before. Using these lines, the simulated galaxy images can

be assigned labels.
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3.3 Errors and possible solutions

• One of the biggest problems is availing the training and testing data. Initially, Galaxy

Zoo images of the Sloan Digital Sky Survey were used since there were a lot of labelled

images. But a lot of these turned out to be erroneous. Finally, google images were used.

• The number of google images was extremely less - around 60-70 per normal class. For a

good CNN code, at least 1000-2000 images are required. Even though data augmentation

was done, there is a huge chance of overfitting.

• The ideal testing:training ratio is 70:30. This is feasible only if a large dataset is available.

Yet again, this was not possible.

• The final results were not as expected. The testing accuracies were high, but even many

obvious images were not classified properly. This may be due to overfitting of training

data.

• The three training classes - Barred, Elliptical, Spiral - might have been poorly cho-

sen. While elliptical galaxies are significantly different morphologically, spiral and barred

galaxies have a lot in common. Differentiating between these two classes is the most

difficult.

Most of the above problems can be solved by larger and better labelled datasets. This is the

biggest challenge. Secondly, class division must be properly done to ensure effectiveness. For

a final evaluation of the algorithm, different network architectures and AD algorithms need to

be compared side by side for their efficiencies.
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